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DYNAMICS OF A SLENDER BEAM WITH AN
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The governing second order temporal di�erential equation of a slender beam
with an attached mass at an arbitrary position under vertical base excitation
which retains the cubic non-linearities of geometric and inertial type is reduced
to a set of ®rst order di�erential equations by the method of normal forms for
combination parametric and internal resonances of 3:1. These equations are
used to ®nd the periodic, quasi-periodic and chaotic responses of the system
for various bifurcating parameters, namely, damping, amplitude and frequency
of base motion, attached mass and its location. Bifurcation set, mixed-mode
oscillation, period-doubling, quasi-periodic orbits and di�erent routes to
chaos, namely, alternate periodic-chaotic transition, torus breakdown and
intermittency have been studied for the above mentioned bifurcating
parameters using phase portrait, PoincareÂ section, time and power spectra.
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1. INTRODUCTION

This paper presents a study of the periodic and chaotic responses due to
combination parametric resonance of a base excited cantilever beam carrying a
lumped mass at an arbitrary position (Figure 1) which is an extension of the
authors' work [1] where only the ®xed point responses of the system were
studied. The governing temporal equation of motion of the system is given by [1]

�un � 2ezn _un � o2
nun ÿ e

X1
m�1

fnmum cosft

� e
X1
k�1

X1
l�1

X1
m�1
fanklmukulum � bnklmuk _ul _um � gnklmukul�umg � 0, n � 1, 2, 3, . . . �1�

where (�)=d( )/dt. The parameters zn , on represent the damping and natural
frequency of the nth mode; fnm is the forcing parameter in the nth mode due to
the interaction of the mth mode; f is the non-dimensional frequency of base
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excitation; anklm is the coef®cient of the geometric and bnklm , gnklm are the
coef®cients of the inertial non-linear terms. The parameter e is used to indicate
the smallness of damping, forcing and non-linear terms.
There are a few studies available on the investigation of periodic and chaotic

responses of parametrically excited systems with simultaneous combination and
internal resonances. Asmis and Tso [2] investigated two-degree-of-freedom
systems with cubic non-linearities to a combination parametric resonance and
found beating effect for internal resonance of type 1:1. Nayfeh and Zavodney [3]
obtained periodic orbits arising out of Hopf bifurcation and the sequence of
period doubling leading to chaos for a two-degree-of-freedom system having
quadratic non-linearities under combination parametric resonance with two-to-
one internal resonances. The same system is further investigated by Streit et al.
[4] where they found the non-zero periodic motions to co-exist with a stable
equilibrium state over a range of detuning near the resonant frequency and also
observed quenching of the chaotic motion near exact tuning to the parametric
resonance. Nayfeh and Balachandran [5] reviewed the systems with modal
interaction. Johnson and Bajaj [6] studied the amplitude modulated and chaotic
dynamics in the resonant motion of strings, where they observed two limit cycle
branches for the averaged equations, one arising due to the Hopf bifurcation
and the other due to a global saddle-node bifurcation. With variation in
detuning, the isolated branch exhibits period-doubling bifurcations, chaotic
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Figure 1. Vertically base-excited cantilever beam carrying a lumped mass.



NON-LINEAR DYNAMICS OF A SLENDER BEAMÐII 283

attractors and merging attractors, giving rise to RoÈ ssler as well as Lorentz-type
solutions. Change in detuning also results in torus-doubling, merging of tori and
then destruction of torus leading to chaotic amplitude modulations. Zavodney
and Nayfeh [7] experimentally and theoretically dealt with principal parametric
resonance of a base-excited cantilever beam carrying a lumped mass without
internal resonance. Kar and Dwivedy [8] studied the same system [7] with an
internal resonance of 3:1 and observed many chaotic phenomena. Banerjee et al.
[9] obtained the periodic, chaotic responses of a two-degree-of-freedom system
with quadratic non-linearity. Nayfeh and Balachandran [10] illustrated a number
of examples related to the ®xed-point, periodic, quasi-periodic and chaotic
responses of different systems.
In most of these papers, either the method of multiple scales or the method

of averaging is used to reduce the second order temporal equation to a set of
®rst order differential equations which is then integrated to obtain periodic,
quasi-periodic or chaotic responses. In this paper, the method of normal forms
[11] is used to reduce the governing temporal equation (1) to a set of ®rst
order differential equations which is then directly integrated to get the
periodic, quasi-periodic or chaotic response of the system. The purpose of
using the method of normal form is to get the required results with simple
mathematical substitution without going for the usual complicated
mathematical formulation as in the case of the method of multiple scales [1,
3, 12±15] or the averaging method [4, 6, 9]. PoincareÂ section, time and power
spectra are used to study these responses.

2. ANALYSIS

As a ®rst step in determining uniform expansions of the solutions of equation
(1) by the method of normal forms, we recast them into n ®rst order complex
valued equations. To accomplish this, the solution of this n-dimensional system
with e=0 can be expressed as

un � An e
iont � �An e

iont, �2�
where An are complex and �An is the complex conjugate (cc) of An . Hence,

_un � ion�An e
iont ÿ �An e

ÿiont�: �3�
When e 6� 0, un and _un can still be represented by equations (2) and (3) but with
time varying rather than constant An . Then identifying An e

iont by xm , equations
(2) and (3) can be rewritten as

um � xm � �xm , _um � iom�xm ÿ �xm�, �4a, 4b�
where i � �������ÿ1p

, xm is a complex variable and �xm is its cc. Letting z � exp�ift�
and substituting equations (4) into equation (1), one has
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To simplify the above equation, introduce the near-identity transformation

xn � Zn � ehn�Zm , �Zm , z, �z�: �6�

Substitution of equation (6) into equation (5) yields
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The form of the O(e) terms suggests the following form of h
m

hm � Dm1Zm � Dm2�Zm �
X1
k�1
�G1

mkzZk � G2
mkz�Zk � G3

mk�zZk � G4
mk�z�Zk�: �8�

It follows from equation (7) that

_Zn � ionZn �O�e�: �9�

Substituting equations (8) and (9) into equation (7), one has
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�
: �10�

Inserting equation (6) into equation (4), one gets

um � Zm � �Zm �O�e�: �11�
Note that equation (10) does not contain terms D

n1

; hence, they are arbitrary.
Choosing Gi

nk , i=1, 2, 3, 4 to eliminate the terms involving zZn , z�Zn , �zZn and
�z�Zn , it is found that some of Gi

nk have small-divisor terms for combination
resonance and the coef®cients of non-linear terms have small-divisor terms for
internal resonance, which are discussed in the next section.

2.1. COMBINATION RESONANCE (f1o1+o2)

Since o21 3o1, to express the nearness of f to o1+o2 the detuning
parameters s1 and s2 are introduced as

o2 � 3o1 � es2, f � 4o1 � es1 � o1 � o2 � e�s1 ÿ s2�: �12�
Substituting equations (12) into equation (10) and eliminating the secular terms,
one has for n=1,
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and for n>2.
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_Zn � ionZn ÿ eznZn �
ie
2on

X1
j�1

aenjZn�ZjZj , �15�

where the expressions for Qi and aeij , i=1, 2, . . . , j=1, 2, . . . are given in
Appendix A. As the higher modes (n>2) are neither directly excited nor
indirectly excited by internal resonance, they die out due to the presence of
damping. So, for this case, our n-dimensional system reduces to a two-
dimensional one as modal interaction is limited to two modes only. Comparing
equations (2) and (11) and introducing

An � 1

2
an�t� expfibn�t�g, �16�

one has

Zn �
1

2
an expfi�ont� bn�g, �17�

where, an and bn are real. Substituting equation (17) into equations (13±15) and
separating the real and imaginary parts, one has the following set of
autonomous equations.

2o1�z1a1 � _a1� ÿ 1

2
f12a2 sin g1 �

1

4
Q1a2a

2
1 sin g2 � 0 �18�
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1

2
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�21�
where

g1 � ÿb1 �
1

4
s1t, g2 � ÿb2 ÿ s2tÿ 3

4
s1t

� �
: �22, 23�

The same set of reduced equations (18±21) have been obtained using the method
of multiple scales [1].

The ®rst order solutions of the system can be given by

u1 � a1 cosf�o1tÿ g1g, u2 � a2 cosf�o2tÿ g2g, �24a, 24b�
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where

�!1 � !1 � "�1=4 �!2 � 3�!1: �25a 25b�

While finding the stability and bifurcation of the steady state response, as
the reduced equations (18±21) contain terms ai _j�i j � 1 2�, their perturbed
equations will not contain the perturbations � _1 or � _2 for trivial
solutions. Hence, stability of trivial points cannot be obtained by
perturbing the above reduced equations. Hence, to overcome this difficulty,
the transformation

pi � ai cos i qi � ai sin i �26a 26b�

is introduced and trigonometric manipulations are carried out to arrive at
the following normalized reduced equations.
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Using equations (26), equation (24) can be rewritten as

u1 � p1 cos �!1� � q1 sin �!1� u2 � p1 cos 3�!1� � q1 sin 3�!1� �28a 28b�

where
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�!1 � !1 � "�1=4:

2.2. STABILITY OF PERIODIC RESPONSE

Stability of the periodic solutions of the modulation equations (27) is
determined using Floquet theory. Thus, to determine the stability of a T periodic
limit cycle P(t)=P(t+T), where P=[p1, q1, p2, q2]

T, one superimposes on it a
small perturbation y(t). Expanding the resulting equation in Taylor series for
small y(t) and linearizing the ¯ow about the periodic orbit, one obtains the
linear variational equation

_y � Jc�t�y, �29�
where Jc is the Jacobian matrix of equation (27).
Let YYY(t) be the fundamental-matrix solution satisfying

_YYY � Jc�t�YYY, YYY�0� � I: �30�
where I is the unit matrix.
Then, the Floquet multipliers are the eigenvalues of the monodromy matrix

YYY(T). Because equations (27) are autonomous, one of the multipliers is always
+1. If all the other multipliers lie inside the unit circle, then the orbit
is asymptotically stable. If one of the multipliers leaves the unit circle, then
the orbit is unstable. When a multipler leaves the unit circle through +1, the
resulting bifurcation is either cyclic-fold or pitchfork, when it leaves through ÿ1,
period-doubling bifurcation occurs. A Hopf or Neimark bifurcation occurs when
two complex conjugate multipliers leave the unit circle.

3. NUMERICAL RESULTS AND DISCUSSION

In part I of this paper [1], the ®xed point response of the reduced equations
are studied extensively for different system parameters and it is shown that the
®xed point response loses its stability either by saddle-node (s-n) or by Hopf
bifurcation point (HBP) under combination parametric and internal resonances
of type 3:1. Though these response curves predict the regions in which the ®xed-
point responses are unstable, it is not determined whether the system is stable or
unstable in that region, because in these regions the system may have stable
periodic or quasi-periodic response, or the response may be chaotic depending
on the control parameters (namely, amplitude of base excitation G, external and
internal detuning parameters s1, s2 and damping parameter �). Also, in between
the stable ®xed-points for a given set of control parameters, the system may have
periodic, quasi-periodic or chaotic attractors. Hence, the overall stability of the
system can be predicted only when all other possible responses are determined
along with its ®xed-point response. Besides, the system response may change
abruptly with the variation of the system parameters. Hence, in this section a
parametric study of the periodic, quasi-periodic and chaotic responses is carried
out.
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As the periodic, quasi-periodic and chaotic responses have their local/global
origin at the ®xed point responses, to start with, the critical points are
determined from frequency and forced response curves by numerically solving
the reduced equations (18±21), and their stability and bifurcation are obtained
from the eigenvalues of the Jacobian matrix Jc . It may be noted from equations
(24) and (28) that the ®xed point response of the reduced equations corresponds
to the periodic response of the original system.
Figure 2 shows the bifurcation set in the G0f plane for damping parameter

�=2. To better visualize these bifurcation points, response curves for some
values of G are plotted in Figure 3. As the same bifurcations are observed in
both modes, only the ®rst mode non-trivial response curves are plotted in Figure
3. The trivial response can be determined from Figure 2, which is unstable
between the two Hopf bifurcation points. While THBP(L) and THBP(R)
represent respectively the set of sub- and super-critical HBP to the left and right
of the unstable branch of the trivial state, NTHBP(L) and NTHBP(R) represent
the set of super- and sub-critical Hopf bifurcation points in the non-trivial
branch. The THBP(L) and THBP(R) coalesce at f=o1+o2 with G=4�74.
Though the trivial state is completely stable below G=4�74, the non-trivial
responses exist much below this value. But, these non-trivial branches are
unstable below G=4, the critical point at which the ®rst nucleation of a stable
point is observed in the response curve (Figure 3, curve a) at f=o1+o2 with
the generation of NTHBP(R). With an increase in G, this closed curve becomes
increased in size and another isolated curve to the left of it appears with the
stable and unstable branches meeting at the s-n bifurcation point (Figure 2,
curve 4). Also, in the lower side of the closed curve one stable branch is observed
having s-n bifurcations at the ends (starting points of 6 and 7, Figure 1). Further
increase in G gives birth to the NTHBP(L) and another s-n point in the original
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Figure 2. Bifurcation set with �=2. Lines 1ÐTHBP(L), 2ÐTHBP(R), 3ÐNTHBP(R), 4Ðs-n,
5ÐNTHBP(L); 6, 7 and 8 s-n.



290 S. K. DWIVEDY AND R. C. KAR

closed curve (Figure 3, curve b) which, with a higher value of G, becomes the
meeting point of these two isolated curves (Figure 3, curve c). The stable branch
in the lower side of the response curve increases till it reaches the domain of
THBP(R), after which (point ``a'' Figure 1) it decreases sharply and the two s-n
points coalesce at point ``b'' (Figure 2), where they meet the NTHBP(L). As this
stable branch exists to the right of NTHBP(L), the system has a tendency to
jump to it from the NTHBP(L). With an increase in G, the single response curve
(Figure 3, curve d) is divided into the upper and lower branches (Figure 3, curve
e). The lower branch is purely unstable with many turning points (not s-n) which
play a signi®cant role in the creation of the periodic, quasi-periodic and chaotic
orbits. As topologically equivalent bifurcation sets are observed for different
values of �, they are not plotted here.
Considering the response curve at G=6 and �=2, the system has a sub-

critical HBP (f=4�22) to the left of the unstable trivial state, and hence the
response will jump to the stable non-trivial branch which loses its stability at the
s-n (f=4�27) bifurcation point and an isolated stable periodic orbit having its
global origin at this s-n bifurcation point, similar to those found by Johnson and
Bajaj [6], is observed. With an increase in the frequency of external excitation f,
the periodic orbit becomes reduced in size (Figure 4) as it approaches the super-
critical THBP(R) (Figure 2). From Figure 4, it can be observed that the
amplitudes of the second mode periodic orbits are approximately twice those of
the ®rst mode. As the amplitude of external excitation G increases, for the given
f and �, these periodic orbits initially increase in size and suddenly disappear
giving rise to blue-sky catastrophe as G enters the s-n triangle (Figure 2, triangle
abc), which again appear when G comes out of the s-n triangle. These variations
in periodic orbits are shown in Figure 5 for f=4�3 and �=2. Though these
orbits are periodic, they contain many harmonics. With further increase in
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Figure 3. Frequency response curves with �=2. (a) G=4, (b) G=5�2, (c) G=5�3, (d) G=6,
(e) G=10.
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G(Ge10), these periodic orbits ®nally escape to another periodic orbit having its
global bifurcation point at the NTHBP(L) (Figure 6).
Figure 6 shows the four symmetrically placed periodic orbits along with the

limit cycle at the trivial ®xed point for f=4�3, G=10, �=2. While equations
(27) indicate �p1, q1, p2, q2� , �ÿp1, ÿ q1, ÿ p2, ÿ q2� is the only possible
transformation, numerical calculations give the following transformation for the
periodic attractors:

�p1, q1, p2, q2� , �ÿq1, p1, q2, ÿ p2� , �q1, ÿ p1, ÿ q2, p2�
, �ÿp1, ÿ q1, ÿ p2, ÿ q2�:

Though the response curve (Figure 3, for G=10) shows the NTHBP(L) at
f=4�32, due to strong interaction of the fold at f=4�28, isolated periodic

2.5
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q
1

e
d

c

a
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q
2 e d c b a

Figure 4. Periodic orbits near the super-critical trivial Hopf bifurcation point (THBP(R)).
G=6, �=2; a: f=4�3, b: f=4�35, c: f=4�37, d: f=4�4, e: f=4�42.
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orbits are observed (Figure 7) slightly before NTHBP(L). The cross (i.e., eight

shape) in the second mode of the state space is due to the presence of harmonics.

The time response clearly indicates that the system exhibits mixed-mode

oscillation which can be represented by P1
1, i.e., a large-amplitude oscillation is

followed by a small-amplitude oscillation [10]. The power spectra also indicate

the presence of harmonics in the response.

With an increase in f, period doubling takes place (Figure 8) as one of the

Floquet multiplier leaves the unit circle through ÿ1. This periodic oscillation is

again a mixed-mode oscillation of type P2
2. Unlike the case of principal

parametric resonance [8], here the period doubling does not lead to chaos as the

2T-period reverts back to single period. The 2T-periodic orbits and their time

spectra at f=4�45, G=10 and �=2, and the periodic orbit at f=4�56 with
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p1

q
1 dca b
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0–6 6

p2

q
2 dcba

Figure 5. Variation of periodic orbits having their global origin at THBP(R) with G. f=4�3,
�=2; a: G=5, b: G=6, c: G=9, G=10.
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the same G and � are shown in Figure 9. These periodic orbits, with an increase
in f, continue till they reach the domain of the sub-critical NTHBP(R). Further
increase in f results in the blue-sky catastrophe with sudden disappearance of the
periodic orbits, and the response jumps down to the stable trivial ®xed point.
For r1 5, �1 0�03 and at f=4, the beating effect is observed, which dies

down with the passage of time (Figure 10).
It has already been shown in Figure 6 that four symmetrically placed periodic

attractors are found near the THBP(R) for higher values of � (e.g., �=2). It is
observed that, with a decrease in �, the size of these periodic attractors decreases
and they move towards the origin (i.e., the trivial ®xed point). One such periodic
attractor is shown in Figure 11(a) (marked by 1) and its time response is shown
in (b). For G=10 and f=4�3, these periodic attractors exist up to �=1�6.
These mixed-mode periodic responses, with further decrease in damping, change

30
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–30
0–30 30
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q
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8

0

–8
0–8 8
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q
2

Figure 6. Simultaneous existence of periodic orbits near the trivial and non-trivial super critical
Hopf bifurcation points. G=10, f=4�3, �=2.
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to chaotic ones which are a random mixture of the nearby periodic states. Such
a sequence is known as an alternate periodic-chaotic sequence which continues till
� reaches 0�7. One such chaotic attractor at �=0�75 is marked by 2 in Figure

11(a) and its time response is shown in Figure 11(c). As these chaotic attractors
come closer to each other with further decrease in �, one of the chaotic orbits
visits intermittently the other chaotic orbits, and returns back to the phantom

(or ghost) orbit (Figure 11) and the corresponding time response (Figure 11(d))
is interrupted by sudden chaotic outbursts. This is a new type of intermittency

route to chaos which is preceded by alternate periodic-chaotic sequence of the
mixed-mode periodic response. All these four chaotic orbits have a tendency to
merge and form a bigger chaotic attractor giving rise to attractor merging crisis

(Figure 12).
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Figure 10. Phase portrait showing beating effect for f=4, G=4�5, �=0�03.
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Besides these periodic responses, the system also experiences quasi-periodic

responses in the region where the system has stable ®xed points. For the

undamped system and with an external frequency far away from f=o1+o2,

two-torus orbits have been observed. One such torus for f=3�5, G=10 is

shown in Figure 13(a) and its PoincareÂ section is shown in Figure 13(d). Figure
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Figure 11. Phase portrait and time spectra showing alternate periodic chaotic sequence and
intermittency route to chaos. G=10, f=4�3; 1: �=1�75, 2: �=0�75, 3: �=0�6.
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13(b) shows the chaotic response arising out of a broken torus (Figure 13(e)).
With a slight change in the initial conditions another interesting chaotic attractor
(Figure 13(c)) is obtained whose PoincareÂ section is shown in Figure 13(f). This
clearly indicates the butter¯y effect of the chaotic attractor.
With an increase in damping, breakdown of the tori takes place (Figure 14(a))

leading to chaotic responses. With further increase in damping this chaotic
attractor comes into contact with the trivial ®xed point response and becomes
periodic. Figure 14(b) shows the periodic attractor which exists for �=1.
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Figure 14. Effect of damping with G=10, f=4�3. (a) Torus breakdown route to chaos:
�=0�01; (b) periodic response: �=1.
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With variations in m and b, similar observations have been made for periodic,
quasi-periodic and chaotic responses, the only change being in their global
origins.

4. CONCLUSIONS

The method of normal form is used to determine the dynamic response of a
slender beam with a lumped mass at an arbitrary position subjected to
combination parametric and internal resonances of 3:1. The system has cubic
geometric and inertial non-linearities. The bifurcation set for the ®xed-point
response indicating the Hopf bifurcation sets for the trivial and non-trivial states
and the s-n triangle in between the unstable trivial states are clearly marked with
reference to the response curves for a wide range of G. These bifurcation points
play an important role in the nucleation of periodic, quasi-periodic and chaotic
orbits. Variation of the periodic orbits with their global origin from the s-n and
Hopf bifurcation points with G, f and � are studied. Mixed-mode oscillation,
period-doubling, quasi-periodic orbits and different routes to chaos, namely,
alternate periodic-chaotic transition, torus break-down and intermittency, are
observed along with the attractor merging crisis and butter¯y effect. These
responses are analyzed using phase portraits, PoincareÂ sections, time and power
spectra.
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APPENDIX A

h11 �
�1
0

c2
n dx,

h12 �
�1
0

d�xÿ b�c2
n dx,

h13 �
�1
0

d�xÿ b��cnx�2 dx � c2
nx�b�,

h21 �
�1
0

c2
n dx � h11,

Rn � h11 � mh12 � Jl2h13,

zn � z�n� � e
ch21

2eRnry1

� �
�,

h31 �
�1
0

c2
n dx,

h32 �
�1
0

d�xÿ b�c2
i dx � h12,

h33 �
�1
0

�1ÿ x�c2
nx dx,

h34 �
�1
0

�1
x

d�xÿ b� dxc2
nx dx,

y2n �
EIk4n
rL4Rn

�h31 � mh32� ÿ g

LRn
�h33 � mh34�,
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fnm � f �nmÿ=" � 
2Zo
"�2

1RnL
�h33 � �h34�

h41 � 1

2

�1

0

 k lx mx n dx

h42 � 1

2

�1

0

��xÿ �� k lx mx n dx

h43 � 3

�1

0

 kx lxx mxxx n dx�
�1

0

 kxx lxx mxx n dx

�nklm �
EI�2

"�L4Rn�2
1

f�4
k�h41 � �h42� � h43g

h51 �
�1

0

�1

x

��
0

 l� m� d�

� �
d�

� �
 kx nx dx

h52 �
��

0

 lx mx dx

� � ��
0

 kx nx dx

� �
h53 � f kx lx mx nxgx��
�nklm �

�2

"Rn
fh51 � �h52 � J�2h53g

h61 � h51

h62 � 1

2

�1

0

 kx lx m n dxÿ
�1

0

 kx lxx

�1

x

 m d�

� �
 n dx

h63 � h52

h64 � 1

2
� kx lx m n�x�� ÿ  m���

��
0

 kx lxx n dx

h65 � 1

2
h53

nklm �
�2

"Rn
�h61 ÿ h62 � ��h63 ÿ h64� � J�2h65�:

Expression for aenj , Q1, Q2

aenj � anj � bnj � gnj,

anj � 3annnn, for j � n

� 2�annjj � anjjn � anjnj�, for j 6� n,
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bnj � o2
nb

n
nnn, for j � n,

� 2o2
j b

n
njj, for j 6� n,

gnj � ÿ3o2
ng

n
nnn, for j � n

� ÿ2fo2
j �gnjnj � gnnjj� � o2

ng
n
jjng, for j 6� n,

Q1 � a1121 � a1211 � a1112

ÿ o2
1b

1
211 � o1o2�b1121 � b1112�

ÿ fo2
1�g1211 � g1121� � o2

2g
1
112g,

Q2 � a2111 ÿ o2
1�b2111 � g2111�:

The linear undamped mode shape cn(x) can be written in non-dimensional

form as

cn�x� ���sinknxÿ sinhknx� ÿ L�cos knxÿ coshknx��
�U�xÿ b�f�h1 ÿ Lh2��sinkn�xÿ b� ÿ sinhkn�xÿ b��
� �h3 ÿ Lh4��cos kn�xÿ b� ÿ coshkn�xÿ b��g,

where U is the unit step function and cn(x) is the eigenfunction of the nth mode.

The other terms are de®ned below.

h1 � �k22l11 ÿ k12l12�=D,

h2 � �k22l12 ÿ k12l22�=D,

h3 � �k11l12 ÿ k12l11�=D,

h4 � �k11l22 ÿ k12l12�=D,

D � ÿ2�1� coskn�1ÿ b� coshkn�1ÿ b��,
k11 � sinkn�1ÿ b� � sinhkn�1ÿ b�,
k12 � cos kn�1ÿ b� � coshkn�1ÿ b�,
k22 � ÿ sinkn�1ÿ b� � sinhkn�1ÿ b�,
l11 � ÿ sinkn ÿ sinhkn,

l12 � ÿ cos kn ÿ coshkn,

l22 � sin kn ÿ sinhkn,

L � �2mh1 � kn�sinknbÿ sinhknb��=�2mh2 � kn�cos knbÿ coshknb��:
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Yn is the nth linear natural frequency of the system which is given by

Y2
n �

EI

r
kn
L

� �4
,

kn being the eigenvalue of the nth mode of vibration obtained from the solution
of the transcendental equation

4�h1h4 ÿ h2h3�
l2mJ

� 2k4�1ÿ cos kb cosh kb�

� 2k3

m
�h1�sin kb� sinhkb� � h2�cos kbÿ coshkb��

� 2k

Jl2
�h4�sin kbÿ sinhkb� ÿ h3�cos kbÿ coshkb�� � 0:

A.1. PHYSICAL EXAMPLE

A metallic beam is considered with the following properties: L=125�4 mm,
I=0�04851 mm4, E=0�209366106 N/mm2, Zr=1 mm, c=0�1 N � s /mm2,
r=0�03332 gm/mm, m=3�68979, J=0�959, b=0�25. The roots of the
characteristic equation are found numerically to be k1=1�80097, k2=3�2836
and the corresponding non-dimensional natural frequencies are o1=1 and
o2=3�33179. The book-keeping parameter e and scaling factor l are taken as
0�001 and 0�1, respectively. The coef®cients of damping (zn), excitation ( fnm) and
non-linear terms, (anklm , b

n
klm , g

n
klm) are found to be of the same order. The values

of other required parameters expressed in this Appendix are calculated to be:
ae11=2�54149, ae12=ÿ12�2027, ae21=ÿ6�63699, ae22=ÿ195�55,
Q1=14�62282, Q2=7�84674, f �11 =0�0655762, f �12 =0�0122118, f �21 =0�04249,
f �22 =0�1699298, z�1 =0�0118963, z�2 =0�0045865.

APPENDIX B: NOTATION

un lateral displacement of the nth mode of beam vibration
L length of the beam
E Young's modulus of the beam
I moment of inertia of the beam section
Jo polar moment of inertia of the attached mass
J non-dimensional polar moment of inertia of the attached mass= Jo/rLr2

r scaling factor used in multi-mode discretization
m mass of the attached element
r mass per unit length of the beam
d length of the attached element from the base (Figure 1)
s reference variable along beam (Figure 1)
x =s/L
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c coef®cient of damping
z vertical base excitation (=Zo cos Ot)
m mass ratio (mass of attached element/mass of the beam)
b location parameter (=d/L)
zn damping ratio of the nth mode
yn natural frequency of nth mode (dimensional)
on natural frequency of the nth mode (non-dimensional)
f non-dimensional frequency of external excitation (=O/y1)
fnm forcing parameter in the nth mode due to interaction of the mth mode
anklm geometric non-linearities
bnklm inertial non-linearities
gnklm inertial non-linearities
G non-dimensional amplitude of external excitation (=Zo/Zr)
� damping parameter (=zn/z

�
n)

Zr scaling parameter
t time
t non-dimensional time (=y1t)
e book-keeping parameter to indicate smallness of damping, non-linearities

and forcing parameter
s1, s2 external and internal detuning parameters
an amplitude of excitation of the nth mode
gn phase of excitation of the nth mode
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